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We coustruct a statistical theory of a fluid — suspended particles system, under the as-
sumption that random, localized fluctuations of the phase velocities and concentrations
are imposed on the averaged flow. We obtain the criterion of the violation of the homogen-
eity of the flow in such a system and the expressions for the transfer coefficients con-
nected with the fluctuating motion as well as the corresponding dynamic equations.

When we attempt the description of the motion of a disperse system making use of the
Navier — Stokes equations for a homogeneous fluid with certain effective viscosity coef-
ficients, we run into expected difficulties related to the fact that these coefficients are
dependent on the intensity of these localized phase fluctnations imposed on the average
motion of the flow. Therefore neither a satisfactory mechanical model of disperse systems,
nor the formulation of the corresponding dynamic equations can be realized without a
detailed analysis of these random motions.

Particles suspended in a viscous fluid form a complex, nonconservative system which
possesses both, the properties of a dense gas with potential interaction, and the distinctive
features of an interacting Brownian system of particles. The required statistical theory can
be constructed by two different methods. The first of these methods is based on the as-
sumption that the particles of the aystem exhibit small amplitude motions causing porosity
fluctuations, while groups of particles exhibit large amplitude fluctuations caused by the
interaction of small amplitude fluctaations with the supporting flow {1 and 2]. The second
method is based on the atady of the kinetic equation for the suspended particles, under the
assumption that their motion tesulting from their interaction with the dispersing medium
cen be simulated by a random process with independent parameters [3 and 4]. We have
shown in [2] that the latter assumption is false, since the process of variation of random
velocities of the particles is not Markovian. The assumption that the particles move about
in a bunch, is also largely conventional since the spatial fluctnations are of the order of
the mean distance between the particles of the system. This dimension, however, is not
small enough to justify the adoption of the hypothesis of statistical independence of indi-
vidual particles which, like the well known hypothesis of the random molecular motion in
the kinetic theory of gases, plays the decisive part in the second of two methods mentioned
above,

The statistical theory of disperse systems considered below is based, asin [2], on the
correlation theory of random processes, but without separating the pulsating motion into
‘small and large amplitude components.

1. Btochastic equations. We consider a monodisperse system of particles of
radius g and density d,, suspended in & medium of density d, and viscosity po. We shall
use the two-velocity model, in which the phases are considered to be mutually permeable,
interacting, continuous media [5]. Equations of conservation of mass of the phases under
the assumption of incompressibility of both the particles and the dispersing mediom, have
the form
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Where p denotes the mean volume concentration of the dispersed phase connected with
the mean porosity € of the system by the relation p=1 — €. Equations of conservation of
impulse of the phases can be written in the form
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Here p is the pressure in the fluid phase, F is the intensity of the interaction between
the phases per unit volume of the disperse system, g is the gravity vector and E is a unit
tensor. Phase impulse flux density tensors II() are represented as sums of the ‘regular’ and
unregular’ terms the latter of which describes the impulse transfer caused by phase fluctu-
ations and by the viscous coupling in the dispersing medium. Symbol @ * b denotes a
dyadic product of the vectors a4 and b.

Hydrodynamic parameters entering (1.1) and (1.2) are obtained by averaging over the
volumes containing a very large number of particles. E.g. if the velocity of the j-th particle
is wli), its specific volume 0; and the mean velocity of the fluid phase within this volume
is v(/), then we have the following expressions for the mean parameters:

(1.3)
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where g, denotes the volume of a single particle.
Neglecting the Basse force, we can write for F the following expression: *
lo) o
F=—pVp+dipt g +BpRu, u=v—w, f=38 (14

Here £ = £(p) is the coefficient of the apparent mass and K = K (p) is a function
taking into account the deviation of the viscous force from the Stokes force when the flow
around the particles is constrained. We conaider £ and X to be certain experimentally de-
terminable functions of p.

The vector fields v (¢, r), w (¢, 1), p (¢, )} and p (¢, T) satisfying (1.1), are assumed
known, Corresponding magnitudes govemed by real volumes containing finite, even if large
number of particles, differ from these mean values by small fluctuations v, w’p “and
p " Equations for the fluctuations can be obtained, after the Eqgs. (1.1) and (1.2) are
linearized, and due regard should be given to the fact that the ‘hydrodynamic’ expressions
for 1Y (1 == 1, 2), given later in Section 4 can only be linearized when the amplitudes
of the perturbations exceed those of the fluctuations by a large amount. When the dynamic
Egs. (1.2) are linearized with resmct to these fluctuations we must, obviously, take into
account the force of fluctuation f!4) exerted on the phases by the surrounding medium in a
unit volume, in their explicit form. Assuming that the forces acting on the phases are pro-
portional to the relative areas occupied by these phases on the surface of the nnit volume
we find, that &) = (1 — o), end £ = pf, where f is a random vector whose mean
value is zero.

* A different expression for F was proposed by the author in [6], but it was later found
erroneous due to the disregard of inertial forces which appear during the use of the
accelerating coordinate systems.
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Using a coordinate system in which W = 0 and v = U we obtain from (1.1} the following
Egs. for fluctuations
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Taking (1.1) and (1.4) into account we obtain, after linearizing (1.2)
(1.6)
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Wenote that unlike the method given in [2], the present method utilizes, as an un-
perturbed solution, not some fictitious motion corresponding to a well-ordered array serving
as a model of a disperse syste, but a real averaged motion. In this respect, our method
resembles that of Enskog in the kinetic theory.

Following[2] we shall represent all fluctuations by stochastic Fourier-Stielties
integrals with random integrating function Z containing independent increments [7] to
obtain, from (1.5) and (1.6), differential equations for these functions

[i (1 — p) k — Vp] dZ, = [i (o -+ uk) + Vv]dZ,
(ipk + Vp)dZ, = — (io + Vw)dZ,

dl (1 - P) [i ((1) + uk)dzv + (dzvv)v] +
+ p(idsEo 4 BK) (dZ, — dZ,) = (1 —p) dZ; + AydZ, (1.7)

= pdZ;+ p (1 —p)"AxdZ,

where w is the frequency and Kk is the wave vector.

2. Expressions for random processes. Below we assume that vector
fluctuations in a flow can be' obtained by superimposing the isotropic and anisotropic
waves, i.e. for any vector ¢ Wwe have

dZ, = kdZ,° + dZ,’, e=v, w, | 2.1)

Velocity fluctuations in the liquid phase represent a secondary effect in the sense
that their appearance is wholly govemed by the requirement that the mass is conserved
during the random motion of the particles. It is reasonable to assume that the change in
the number of particles in a fixed stationary volume causes only the isotropic fluctuations
Vv, while the appearance of anisotropic motions of the dispersing medium is caused only
by the convective transfer of the porosity fluctuations, i.e. dZ,’ becomes zero as u -+ 0.

We note that an essentially analogous assumption was used in [1, 2 and 4]. Then, the
tirst Eq. of (1.7) yields

dz.° = U°dZ,, dZ, = UdZ,

io-+ Vv . ik,
U= =g eek0s Um T iT=pk,—Vmd’

7]
Vi =gz (2:2)
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We notice that when p = const, the vector U coincides with u. Inserting (2.1) and (2.2)
into the third Eq. of (1.7), we obtain

dZf = — p (1 — p) (idit +BK) dZ,° + (1 — p)B,dZ,
dZ{ = — p (1 — o) (0 d,§ +BK) dZ, + (1 — p)* C,dZ,
B, = U° liad, (1 — ¢ + p&) +idy (1 — p) uk + PpK]
Ci=— A + 0% (1 — p) (k) v + U Liod, (1 — p+ p8) -
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which, employed in the fourth Eq. of (1.7) yield, after some manipulations, the following
expressions for dZ ; and dZ,,”

dzZ,° = B lio (d, (1 — p) 1-d&) 4 PKI-'dZ,, B =B, B,

4z, = H-CdZ,, C=0C +G, B, = (1 — p) (iod,§ + BK) U°
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+ BK1 (k7)) W

H = lio(dy (1 — p)-+ &) +BKIE +d, (1 —p) W, Wi = Vaw;

Eqgs. (2.1) to (2.3} define completely the required random processes as functions of the
random quantity dZ, and of the mean parameters.

If the apatial &d temporal variations of the mean values of parameters are macroscopic
while the corresponding fluctuation amplitudes of the disperse system are microscopic, we
can apply the concepts of continuous media to the disperse system and assume, that

*

dlng dlng
ar ~oe. T~k 0

where ¢ denotes any mean parameter of the flow (except p). A set of equations of conse~
cutive approximations in terms of a small § can be easily obtained and it can easily be seen
that the first approximation in which the terms of the lowest order in & are retained, is
analogous to the hydrodynamic approximation leading to the Navier — Stokes equations,
the second approximation of the kinetic theory is analogous to the Barnett approximation,
etc. These approximations lead to considerable simplification of all equations.

In general, neglecting the derivatives of the mean parameters, we obtain
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To compute the varions correlations, we must first obtain the spectral density
.0 (@, ) of the random process p’. An expression for the spectral density of this process
{only in the wave space) describing the simultaneous correlations, was obtained in E]
under the assumption of statistical independence of the position of various particles in
space. It is given by
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where pe is the concentration of the system when it is densely packed, while b denotes
the radius of a volume containing, on the average, N particles. The averaging process
during the determination of fluctuations is performed over thia volume, The choice of N,
i.e. trunkation of the short-wave part of the fluctnation spectrum is dictated, in the present
theory, by the minimum size of the fluctuations at which the linearization in Section 1 can
be performed. The most detailed ‘fine grain’ description of the structure of our disperse
corresponds to the choice of the specific volume of a single particle as an elementary
volume (see the discuasion in [2]).

Introduction in (2.5) of the last multiplier dependent on k, corresponas to the process
of smoothing of the short wave irregularities of the spectrum, which was proposed by
Massignon in {8]. Altematively, we can use a well known procedure of Debye, in which the
spectral density is

360 P(P.""P) 3n s 1
Dy (K) =33 ——_—p. Y(ky—k), ky= (-—2—) 'y (2.6)
where Y (x) is a Heaviside’s function. Such an expression was used in[1].

We note that in the presence of a fluid phase in the system, the positions of the
neighboring particles cannot, in general, be assumed statistically independent. This
however becomes unessential when the fluctuations arve taken over sufficiently large values
(N> 1),

The dynamics of the degeneracy of the porosity fluctuations and, consequently, the
spectral density ¥, (w, K) depend, in the end, on the amount of deviation of the system from
equilibrium, and this is the basic cause of the difficulties encountered in the determination
of pr {ew, K).To overcome these difficulties, we separated in [2] all fluctuations into their
micro- and macro-components, assuming at the same time that the variations in porosity
fluctuations with time represent a diffusion process governed only by the small amplitnde
motions. In fact, the rates of degeneracy are governed by the local fluctuations of all mean
parameters, and ought to be described by the same Egs. (1.5) and (1.6) as the solution of a
certain problem with given initial data. _

Inserting (2.2) and (2.3) into the second Eq. of (1.7), we obtain 2.7)

M (io) dZ, = 0, M (io) = (io 4 Vw) lio (d, (1 — p) + ds&) +
+ BK1 + (ipk + Vp) {k B (i0) + lio (d, (1 — p) + di§) + BK] H-'C (iw)

Eq. M {A)} = 0 represents a characteristic equation of the linear system (1.5) and {1.6),
and its roots define the mode of decay of the fluctuations in the problem with given initial
data.

In fact, the degeneration of fluctuations caused by the regular factors allowed for in
the equations, is compensated by random accumulation of fluctuations, which, naturally,
are not accounted for by this equations. An analogous phenomenon is well known in the
kinetic theory: the Boltzmann equation for example, or the transfer equation ensuing from it,
describe an approximation to the equilibrium state with maximum entropy, neglecting the —
so called —~ background noise resulting from the local deviations from the molecular randomness
[9]. In our system, such a backgronnd noise may sppear e.g. as a result of small aplitude
perturbations within the specific volumes, and these: perturbations cannot, in principle, be
described by means of the regularized Egs. (1.5) and (1.6). Therefore, when the accumula-
tion of flactustions is taken into account, then the following stochastic equation corres-
ponds to (2.7)

M( 5 )dYemA k), AV, k)= (ewdz, 0,0 (2.8)
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Here My (A) is a polynomial cbtained by multiplying ¥ (A} by the common denominator
of the quantities contained within the curly brackets in {(2.7), A (2, &) is & random function
of t depending also on Kk as a parameter and of constant spectral density, while the inte-
gration in (2.8) is performed over the whole frequency range.

Thus (2.8) finally ylelds the following Formula

., (k) do -1
Yoo (0, ) = gt (§ ey 3 2.9)

Writing an approximation corresponding to (2.4), we obtain the following expression
for My (i)

M, (i0) = — (0* + 28,0 + @,%) + { (25,0 + b,?) (2.10)
20 =g (24 12 )ouk, 2= BEo . 4= 2p(uky
bt =z (R )k, do=ds(t—p) +d; (o412
M, (o) = (©° + 26,0 + a,?)® + (210 + by?)?

By virtue of (2.4), relations (2.9) and (2,10) also define the spectral densities of other
random processes considered here,

3. Structure of the steady, zero-gradient flows and critical
fluctuations, Correlation fanctions can be computed using known spectral densities,

from the following Formula [7]:
3.1
Tex(t, £, T, B} =<(a(t+7, r+PT*(, 1)) = S S' oDV (o k)do dk

where & and y denote arbitrary random processes.

Let us first consider the fluctuations taking place within large volumes (N 3 1) wo

that & < b1 can be conmidered as a small parameter during the integration over the
frequencies. In this case, we have

by \2
R e (*3;) <1 (3.2)
and the polynomial |M, (i)|? from (2.10) can be approximately represented by
. 2 r
o+ o5 (B2

Let us consider the steady, zero-gradient flows, and orientate the coordinate axes so,
that g = (— g, 0, 0).
Then Egs, (1.2) yield the following relations for these flows
Vap = — [dy (1 — p) + dypl &, PRu = — (1 —p) (d — d)) g (3.3)

From (2.10) we obtain, after some manipulations, the following expression for

M, (io)|?
e o) [ Mo (o) P =~ (0® + %) [(@ -+ ck1)® + c5%y¢]
. BK _ 2 dink
clm{(i—p)dq’ %—P(i‘“‘?) (1_P+ d-P_)u
1

€3 = é;ip docy® + deu[ - (2-{—- i—-s_—-;) c,:H
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Using the approximate equation 0?4+ €% = ¢;2, we obtain, on integrating (2.9),

Clzcaklzmap (k)

Weo (0, k)= (@2 4 €12) [(0 + cok1)? + cs?hkyt]

(3.4)

Integrating the spectral density tensor v’ of the process obtained from (2.4) and using
either (2.5) or (2.6) together with (3.4), we obtain the approximate expression for the cor-
relation tensor (v"y,’>

6,-,41) = r,,i',-(t, T, 0, O) = <Ui'l),'> =

= (7 ) B (@ (p, %) 845+ (1 + 2 (p, ) dudi] w2

1—
P 2 | dhk 3.2)
p n 2 124
o ) =5 |et —or (r5+ 5 ) + i ra e X
3 { 2 dinkK _d
1= (24 Zg)et—n(r+55 )] =%
Similarly, for <wi’wj'> we obtain
eij(z) = rw{,j(t, l‘; 0, O) = <wile"> =
1 . —
— 7 (125 ) 22 (@20, %) 85 + (Do (p) + 204 (p, %)) 81285 w2
dlnK
Oo(p)=(1—pP (1 + 25 ) Oatp 0= {t—pr+ GO

, (1—p1Ep ©1 (o, %)
+xlp(t—p) + 8+ T e T ®

Last two expressions show, that the intensity of the longitudinal fluctuations of
both phases is much higher than that of the transverse fluctuations. At large N, the computed
quadratic flactuations are proportional to N~ !. This implies that the positions of the single
particles can indeed be assumed to be statistically independent and Formulas (2.5) and
(2.6) used. Moreover, this dependence of the quadratic fluctuations on N, justifies the use
of (1.3) in the determination of the mean values of the parameters. For example, at large
N, we have

Q=(@l=—pv—<pVi=(1—p)V, Q:=pw <p'W) =~ pw
for the phase flux.

Let us now decrease N, i.e. turn our attention to small acale local properties of the
disperse system. Consider two limiting cases: 1° — when the inequalities (3.2) hold when
k increases up to the value km = max {k} ~ a‘lp'/ﬁ, which corresponds to the most
detailed description of the fluctuations and 2° — when the ineanalities (3.2) cease to hold
at some k — ko and in which the inequality~is reversed, i.e. by > by, a1, 8, when k = k.
From (2.10) we easily see, that the first case is typical for the relatively fine, lightweight
suspensions in liguids of high density and viscosity, while the other is typical for sus-
pensions of large, heavy particles in a gas. In the first case additional terms appear in the
expressions for the tensors §() (I = 1,2) . These terms are proportional to the higher
negative powers of N and this indicates the presence of negative correlation constraints in
the system. In the second case, we have the following approximate relations for & >> k,
replacing (3.4)

. - O (k
|M0 (”’J) l2 ~w! 4+ b,", \{J‘pp (('0, k)z V‘szg oo (%)

T @b bt

(3.7)
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Thus for Bgii),- say, we have, using for simplicity the expression for (I)pp(k) given
by (2.6),

0,0 = (12 ) 2= [ whbudy + (o) Wo o, %)0g (8 + 8a0)] (3.8)

1 pz/’(l——p)(i—‘rt) 2 ,dhnkK
\F"(‘”")‘5n‘l—p+x[p+(1—p)-1a1<1—rfr )

Expressions for other correlation functions exhibit, in this case, similarly to (3.8),
the terms proportional to N—2/3, and this indicates the presence of positive correlation
constraints in the system. Thus in both cases, single particles and the fluid elements are
found, within their specific volumes, to be statistically dependent, and Formulas (2.5) and
(2.6) invalid. In this connection, the system under consideration resembles classical
systems with long range interaction (ionised gas with Coulombic interaction, ordinary gas
in the critical region, etc.). We find, that the characteristics of random phase motions re-
ferred to relatively small elementary volumes (e.g. to the specific volume) can be computed,
within the framework of the theory based on the relations (2.5) and (2.6), only approximatively,
by extrapolating expressions of the type (3.5) and (3.6) to small N,

Here we must question the validity of the method of statistical analysis of disperse
systems based on the investigation of the kinetic equation for one-particle (unitary) dis-
tribution function, when a statistical connection exists between the neighboring particles.
Indeed we find, that the random forces existing between the particles and the fluid phase
which enter this equation, are represented by the functionals, which are not only the
functionals of the unitary, but also of the binary and higher, multi-particle distribution
functions. Somewhat surprisingly, this is the case for gas suspensions of the coarse
particles, which were studied earlier by means of this method [4].

Clearly, the systems with negative correlation constraits have small amplitude fluctu-
ations (‘homogeneous’ systems). Conversely, systems with positive correlation constraints
(‘inhomogeneous’ systems) exhibit large amplitude fluctuations which may, in principle,
result in the appearance of group movement of the particles, formation of large scale
aggregates and formation of bubbles filled with dispersing medium and containing, practic-
ally, no particles. It is possible, that it is precisely those critical fluctuations that are
responsible for the observed transition from the homogeneous to the nonhomogeneous mode of
pseudo fluidization [10] in the manner similar to that occurring in gases, where the critical
fluctuations cause the appearance of macroscopic volumes of the condensed phase and
other associated phenomena such as that of the critical opalescence etc. [11 and 12].
Comparing b, with 2b, and using the relations (2.10) and (3.3) we obtain, for %, ~ p'sq-1,
the following condition of the appearance of the nonhomogeneous mode:

1y 8a$, 1
(AL(p, %)) 21, A:“ﬁ’(_-1), vy — o

vo? n dy (39)
_ 1 (1=e E_\pl(—pP( 2 | dink ’
L, %)_160( % +p+1~p> K2 (p) (1-—P+ dp )

where A is the Archimedes criterion. The decisive part played by the value of 4 in
establishing the homogeneity or inhomogeneity of the pseudo-fluidized state, was deduced
earlier from empirical considerations, by several authors. In [13] for example, the ap-
pearance of bubbles in the disperse layer is related to a parameter, which has the same
meaning as A. In general we find, that the condition (3.9) shows a good agreement with
many experiments on the violation of the homogeneous state and transition to the in-
homogeneous state (see the survey in [10]. If (3.9) holds, then the same concepts make it
possible to estimate the linear ‘equilibrium’ dimension [ of the inhomogeneities in the
system. We have

l ~ AL (p, #) a (3.10)
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Investigation of the critical fluctustions in an!inhomogeneous state can, apparently, be
conducted with the help of & certain fmction, differing from the S-function, which defines
the correlation coefficients between the porosities in nonoverlapping volumes. This will
alter the form of Expressioas (2.5) and (2.6) for 9, (k). Such an approach was success-
fully employed by Omshtein and Teemike when analysing the fluctuations of gases in the
critical region [11].

It should be stressed, that Formulas (3.5) to (3.10) refer to the steady, zero-gradient
flows. Corresponding relations for the general case can be obtained in a similar manner,
although purely computational problems may present serious difficulties. It seems that
computations performed separately for varions types of disperse flows, constitute a more
rewarding approach,

4. Dynamic equations. Final formulation of the mechanical model demands
explicit expressions for the impulse flux density temsor in (1.2} and for the transport
coefficionts in both phases. Rigorous expressions for these coefficients can only be
obtained from the sequence of equations for partial distribution functions, and this se-
quence has not yet been derived. We shall use the phenomenological approach. In parti-
cular, we shall assume that when the gradients are small, then the tensors II()’ from
(1.2) can be written in the form corresponding to a homogeneous, anisotropic fluid, We then
have

N = PU— (4 4 pE) 209 — 33 (V¥) E] — 3 (V)

1)’ __ pl® 4.1
% = P® — ¥ [2r® — 3/, (Yw) E] — g (Vw) (4.1)

Here PO, 9®, and {0 (I = 1,2) denote, respectively, the pressure (flux
density of the reversible impulse transport) tensor and the shear and volume viscosity
tensors of the fluid and dispersed phase dependent on their pulsating motions, while
p=p(p) is the effective viscosity of the fluid filtering through an ordered lattice of
stationary particles. Viscosity u is proportional to is, increases with incressing p and for
In\ll% p]lt satisfies the following approximate expression p =~ p, (1 -+ %3 p) (see
e.g.[14]).

The following approximate sxpressions for the fluid phase are obtained by analogy
with the turbulence in & homogeneous fluid [7)

PV=~(1—p)d0%, 4V=(1—p)d,DY, W0 (4.2)
I~ 2 t -] ¥ ¥ ? )+RD (t’ r? ‘r! Tu)}d'r
1]

0" =R,(¢, r; 0, 0) =1im 6% = limr, (¢, r; 0, 0)
N1 N~1

The tensors ©1), and R, appearing here, refer to the fluid within the specific
volume of a single particle and are obtained from the magnitudes definad for a volume
element contsining N particles (N :» 1) (see Section 3). Molecular diffasion and molar
mixing of fluid due to its motion along mrved paths between the particles in the lattice,
are not taken into account in (4.2).

We can distinguish between two limit modes of flow [1]. They will depend on the
relationship between the mean time T of traverse of the mean free path A by & particle,
and the time T, of relaxation of this particle to the conditions existine in the supporting
flow. In the first, pseudotarbulent’ mode, we have T ~ A.(w|* Y™ > T, =
= nm (BK)-t, m = oy, n = p/ 0y, sad the collisions between the particles
have no apprecisble inBoence on the local mass and impulse transport processes. In the



Non — Newtonian Aydromechanics of disperse systems 391

second, ‘psendo-gaseous’ state, T <K T, and the collisions are mainly responsible for the
transport processes in the disperse phase. When p € 1, A m Ay where A denotes the

classical free path; when p < ps , the magnitude A may represent the difference in the
radii of specific volumes in the state under consideration and in the state of close packing.

Weh 1 3 Y
e have kza(pp*)'/' (p*/:_p/n)n-p*—p

It follows from Section 3 that the magnitude' ¢ [uf/|? 3 is proportional to p, — p, and
Tq tends to the value different from zero as p -+ py. Therefore the ‘psendo-gasecus’ state
may accomodate an arbitrary disperse system, provided that the latter is of sufficient
concentration. As p -+ 0, T + o and the ‘psendo-turbulent’ state may materialize in any,

sufficiently diluted system,
An obvious anslogy between the transport in the aystem of suspended particles and
the transport due to the tarbulent fluctuations in & homogeneous medium, can also be noted

in the ‘pseudo-turbulent’ state,
The following approximate expressions are analogous to those given for the fluid

phase [7]
P(z) = szew, 1‘(2) ~ deD(a): g(ﬁ) =0

1
D‘”zig{Rw(t, r; T, 0)+R,*(¢, 1; 7, 0)}dr (4.3)
0

In the ‘psendo-gasecous’ flow we have a clearly defined analogy between the suspended
particles and & gas composed of rigld spheres. This analogy was utilised in [1 and 4]. In
this case the tensor P(?) and the transport coefficients can be approximsately estimated from
the known resulis of the kinetic theory of dense ganes by multiplying the quantities given by
the elementary theory, by some functions ofp. Using, as in[1], the results of the Enskog’s
theory of dense gases, we obtain the following approximate relations

PU=pd, (147 (0) 0%, 4% = 4oy’ [Y7(p) + 0.8+ 0.76Y (p)]
E oY (),  DP=4pDY(p), Y(p)=dpu(p)  (4.4)
7’ = pd,D°, i = 2ho (B, o= (4 V2na%m)1, n=po,t

Function X (p) shows how the frequency of the binary collisions (we note that in the
system composed of spheres with S-type interaction, all collisions are binary) changes
with concentration. As we know, increase in the collision frequency with increasing p is
caused by diminishing of the free volume within which the centers of spheres are free to
move, while the screening action of the neighboring particles on each particle leads to the
decrease in frequency, Whem p & 1, then the expreasion obtained by Enskog for X (p) and
utilised in the theory of disperse systems, holds [4]

xP)={1—sp)(1— 8, pL1

In his earlier work [1], the author used the expression for X (p) obtained from the
approximate ‘geometrical’ theory of dense gases, which gave satisfactory results for
£>0.10 to 0.15.

1 (e/p)” 1 1
4p {— (P}'P‘)!{' = 49% (P:'-— p‘f:) ~ p,—Pp

x{p) =
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The appearance of the function X (p) in the expression for P(2) in (4.4) is connected
with the fact that an impulse is transmitted instantaneously within the material of the
particle.

Thus, in general, the rheological characteristics of disperse systems depend strongly
on the type of flow and are usually represented by very complicated functions of mean
parameters of the flow and of their derivatives with respect to the spatial and time co-
ordinates, When p - 0, all inagnitudes in (4.2) and (4.3) decrease as p*where o > 0. When
p -+ Ps, then the components of P(2) tend to the values differing from both, zero and infinity
since 8@ ~ p, — p, while X (P) ~ (P — )L, the components of D(2?) tend to zero as
(pe — p)3/2, while 9(® and £(®) tend to infinity as (p, — p)"‘/’. Various components of
last two tensors considered as functions of p can, and usually have a maximum and a
minimum when p ~ p» “Such a dependence of the viscosity on p has been obtained experi-
mentally for dense, disperse systems (see e.g. [15]).

The problem of formulating a unique equation of conservation of impulse for the total
amount of dispersed phase, is interesting. We can infer from (1.2), that this is indeed
possible in two cases: (1) ~ for the particles suspended in a gas, when we can neglect
the inertia and the gas fluctuations and express F and v from the first Eq. of (1.2) in terms
of p, \/ p and W, subsequently inserting them into (1.1) and the second Eq. of (1.2), and
(2) — for the suspensions of almost uniform density when we can assume that u =0 and
sum Egs. (1.2). In both cases we have three equations; one of the conservation of impulse
of the dispersed phase and two of the conservation of mass of both phases, for three
unknowns W, p and p. We note, that the boundary conditions assume in these cases a
slightly different form; in particular, the pressure gradient of the fluid phase appears in
these conditions.

From this we see, that the disperse systems are, essentially, non-Newtonian. Their
rheological properties are represented by very complicated functions of mean parameters of
the flow, and this leads to the appearance of additional nonlinearities in the dyramic Eqs.
(1.2). In addition, rheological characteristics of the same system may differ appreciably
from one case to the other, depending on the type of motion effected by the system.
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