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We caa~ct a l tatintical theory of a fluid - atspendsd par&lee, syatem, under the as- 
l umption that random, localired fluctuationa of the phaae velocities and concentrations 
are imposed on the averaged flow. We obtain the criterion of the violation of the homogen- 
eity of the flow in much a ymtem and the expression8 for the trancrfer coefficients con- 
nected with the fluctuating motion am well am the corresponding dynamic equations. 

When we attempt the description of the motion of a diaperas ayetern making use of the 
Navier - Stokea equationa for a homogeneous fluid with certain effective viscosity coef- 
ficieatm, we run into expected difficulties related to the fact that these coefficients are 
dependent on the intendty of these localired phase fluctnationa impwed on the average 
motion of the flow. Therefore neither a aatiafactory mechanical model of disperse systems, 
nor the formulation of the corresponding dynamic equadonn cau be realized without a 
detailed analy& of theme random motiona. 

Particle@ suspended in a vimcooe fluid form a complex, nonconservative system which 
powers* both, the proportion of a denas gas with potential interaction, and the distinctive 
featarem of an interacting Brownian qmtem of particles. The required statistical theory cau 
be constructed by two different method*. The fimt of these methods is baaed on the as- 
aumption that the part&lea of the l yatem exhibit mnall amplitude motions causing porosity 
fluctuadone, while $oupm of particles exhibit large amplitude fluctuations caused by the 
intemction of l mall amplitude fluctuations with the supporting flow [l and 21. The second 
method .is baaed on the study of the kinetic equation for the saspatded particles, under the 
l mumption that their motion tewlting from their interaction with the dispersing medium 
cm be simulated by a random procma with independent parameters [3 and 41. We have 
ahown ,in [2] that the latter umrraption ia false, dnoe the process of variation of random 
velocities of the particles ia not Markovian. The l mmumption that the particles move about 
in a bunch, im aho largely conventioml rime the spatial fluctuationa are of the order of 
the mean dimtance between the particles of the system. Thin dimension, however, ie not 
*ml1 enough to jtmtify the adoption of the hypothmia of atatiatical independence of indi- 
vidual particlea &MI, like the well known hypotheaia of the random molecular motion in 
the kinetic theory of gases, play’ the decisive part in the second of two methods mentioned 
above. 

The l tatimtical theory of dioperae l ymtemr considered below ir baaed, as in [2], on the 
corralaldorr tbeary of random procesaea, but without separating the pubrating motion into 
mall aud lrsge amplitude components. 

1. gtOCba~t& e~Udi0118. We consider a monodisperse sy@em of particles of 
mdioo a and den&y d,, sampended in a medium of density dl and viacomity b. We shall 
use the two-velocd~ model, in which the phaaen are considered to be mutually permeable, 
interacting, continuous madia (51. Equation8 of conasrvation of maao of the phases under 
the arumption of incompremeibility of both the particlea and the dispersing medium, have 
the form 
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-~+fo(2--p)v] =o, ~+v(pw)=o, v+ (!*I) 

Where p denotes the mean volume concentration of the dispersed phase connected with 
the mean porosity E of the system by the relation p = 1 - E. Equations of conservation of 
impulse of the phases can be written in the form 

(j a !(I - P) VI 
1 at 

= - VII”’ -t_ dl (1 - p) g - F 

d 8@w) 
2 at 

= -- vnfa) -f- drpg + F 

n’“’ =L J&(l) + n”” (I = 1, 21, l&(l) = pE + dl (I- p) (V * V) 

n 0 t2) = drp (w * W’) 

(1.2) 

Here p is the pressure in the fluid phase, F is the intensity of the interaction between 
the phases per unit volume of the disperse system, g is the grevity vector and E is a unit 
tensor. Phase impulse flux density tensors n(l) are represented as sums of the “regular-and 
onregular’ terms the latter of which describes the impulse transfer caused by phase fluctu- 
ations and by the viscous coupling in the dispersing medium. Symbol a l b denotes a 
dyadic product of the vectors a and b. 

Hydrodynamic parameters entering (1.1) and (1.2) are obtained by averaging over the 
volumes containing a very large number of particles. E.g. if the velocity of the j-th particle 

( ‘) is W f t its specific dume ffi and the mean velocity of the fluid phase within this volume 
is v I?, ( then we have the following expressions for the mean parameters: 

(1.3) 

where aa denotes the volume of a singIe particle. 
Neglecting the Basse force, we can write for F the following expression: * 

F = - PVP + GpE$ + Ppiiu, u=v-w , p=%& (1.4) 

Here t-: f(p) is the coefficient of the apparent mass and K = K (p) is a function 
tahing into acconnt the deviation of the viscous force from the Stokes force when the flow 
around the particles is constrained. We consider { and X to be certain experimentally de- 
terminable functions of p. 

The vector fields v (t, r), w (t, r), p (t, r) and p (t, r) satisfying (l.l), are assumed 
known. Corresponding magnitudes governed by real volumes containing finite, even if large 
number of particles, differ from these mean values by small fluctuations V: W ‘P ‘and 
p ‘. Equations for the fluctuations can be obtained, after the Eqs. (1.1) and (1.2) are 
lineari_zed, and due regard should be given to the fact that the ‘hy~od~~ic’ expressions 
for B(r)’ (I = 1, 2), given later in Section 4 can only be linearized when the amplitudes 
of the perturbations exceed those of the fluctuations by a large amount. When the dynamic 
Eqs. (1.2) are linearized with res!J ct to these fluctuations we must, obviously, take into 
account the force of fluctuation f exerted on the phases by the surrounding medium in a 
unit volume, in their explicit form. Assuming that the forces acting on the phases are pro- 
portional to the-relative areas occupied by these phases on the surface of the unit volume 
we ffnd, that t”’ = (1 - p)f,, and f@) = pf, where f is a random vector whose mean 
value is xero. 

+ A different expression for F was proposed by the author in [6], but it was later found 
erroneous due to the disregard of inertial forces which appear during the use of the 
accelerating coordinate systems. 
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Using a coordinate eyatem in which w = 0 and v = u we. obtain from (1.1) the following 

Eqs. for flactnations 

( a - 
al -/- uv 

) 
p’ + (1 - p) Vv’ - (VP) v’ - (Vv) p’ = 0 

t& + pVw’ + (VP) w’ i- (VW) P’ = 0 (1.5) 

Tahing (1.1) and (1.4) into account we obtain, after linearizing (1.2) 
(1.6) 

4 (I- P) [(~+uv)v~+(y.v)v] -iP(dlf&-1 ) r BK (v’ - w’) = (1 - p) f’ + ASP’ 

1 3W' 
dap at -I- (W’V) w 1 ( - p dlE $ + PK (v’ - w’) = pf’ -1 & Azp’ 

f’ = f - \7p’ A1 = dl (&+uV)v-dld~~+Vp-ddlg-/3~u 

Wenote that unlike the method given in [2], the present method utilizes, as au un- 
perturbed solution, not some fictitious motion corresponding to a well-ordered array sewing 
as a model of a disperse syste, but a real averaged motion. In this respect, our method 
resembles that of Enskoa in the kinetic theorv. 

Following [2] we 
, 

integrals with random 

obtain, from (1.5) and 

shall represent all fluctuations by stochastic Fourier-Stielties 
integrating function Z containing independent increments [7] to 
(1.6). differential equations for these functions 

[i(l - p) k - Vp] dZ, = [i (o -+- uk) + Vv] dZ, 

(ipk + Vp)dZ, = - (io + VW) dZ, 

d, (I- P) fi (0 + uk)dZ, + (d&V) VI + 
+ p (id&o + PK) (dZ, - dZ,) = (1 .-- p) dZ, + AId& (1.7) 

d,p [i&z, $- (dZ,V) w] - p (id,& + PiY) (dZ, -dZ,) = 

= PdZf + P (I- p)‘&G 

where o is the frequency and k is the wave vector. 

2. Expressions for random processes. Below we assume that vector 

fluctuations in a flow can be obtained by anperimposing the isotropic and anisotropic 
waves, i.e. for any vector Cp’ we have 

dZ, = kdZ,” + dZ,‘, cp = v, w, f (2.1) 

Velocity fluctuations in the liquid phase represent a secondary effect in the sense 

that their appearance is wholly governed by the requirement that the maas is conserved 
during the random motion of the particles. It is reasonable to assume that the change in 
the number of particles in a fixed stationary volume causes only the isotropic fluctuations 
V, while the appearance of anisotropic motions of the dfoperdng medium is caused only 
by the convective transfer of the porosity fluctuations, i.e. dz,,’ becomes xe~) as u + 0. 

We note that an essentially analogous assumption was used in [l, 2 and 41. Then, the 

first Eq. of (1.7) yields 

d&.” =m l’OdZ,, dZ,’ = UdZ, 

IJO = 
io+vv iu,k, 

i(l-p)ka--LVP’ ““=i(1-p)k m-v,P’ 
v, = & (2.2) 
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We notice that when p = conat, the vector U coinddea with U. Inserting (2.1) and (2.2) 
into the third Eq. of (1.71, we obtain 

dZ1” = - p (1 - p)-’ (&o&E + BK) dZ,” + (1 - p)-‘BldZ, 

dZf’ = - p (1 - p)-’ (iod,E + fX) d&’ + (1 - p)-’ C,dZ, 

B, = U” [icod, (1 - p + pE) -;- id, (1 - p) uk + fJpK1 

Cl = - A, + i7’dz (1 - p) (kv) v _i-- U bd, (1 - p + pQ -+- 

+ 4 (4 - P) uk -t BPKI + d, (1 - P) WV’) v 

which, employed in the foarth Eq. of 0.7) yield, after some m~ipulationa, the following 
expressions for dZ “, ad d&’ 

dZwo = B [iw (d2 (1 - p) + d,j) i- f=l-“dZ,, B = B, + B, 

dZ,’ = H-XdZ,, c r: c, + c,, B, = (1 - p) (h&E + fJK) li” 

C, = A, + (1 - p) (imd,E + I=) U - d, (1 - p)B [io (d, (1 - P) + d,C) + 

+ WI-’ (W) w 

H = [iw(d, (1 - p) t d,E) + WI E + d, (1 - P) MT, Wij = ViWj 

Eqa. (2.1) to (2.3) define completely the required random processes as fanctions of the 
random poaatity dz 

If the spatial 4 
and of the meaa parameters. 
d tempornl variations of the mean valaea of parsmetera are macroscopic, 

while the corresponding flactaation smplitsdea of the disperae system are microscopic, we 
can apply the concepts of continaona media to the disperse system aad assume, that 

where r$ denotes sny mesa parameter of the flow (except p). A set of equations of conse- 
cntive approximationa in terma’of a small 8 csa be eaaily obtained aad it can easily be seen 
that the first approximation in which the terms of the lowest order in 6 are retained, is 
anslogoaa to the hydrodynamic approximation leading to the Navier - Stokes equations, 
the second approximation of the kinetic theory is analogoaa to the Bamett approximation, 
etc. These approximations lead to considerable simplification of all eqaationa. 

In general, neglecting the derivatives of the mean parameters, we obtain 

dZ,” = (1 $, ,,dZ,, d&’ = +Zp 

dZ,,,’ = 
BdZ, 

d&’ = 
CdZ, 

i0 (dz (1 - P) + MJ + PK ’ io (da (1 - P) + 4s) + /31( 
(2.4) 

c+ Vp+(d,p+d,(l-p))gfB~~u]$- 

+,+ _,Dd,(~.--p)( :I) + uk) + iwd,:;+;PK] =;+ + $+, & = 0s 
(1 - p) k% 

To compute the vmioaa correIat+aa, we mast first obtain the apectra1 dmaity 
yw (0, Irl of the random process p‘. An expression for the spectral data&y of this ocesa 
(aafy in the wave apace) describing the aimuitaneons cotve1ationa. was obtained in 21 p” 
aader the isaamption of atatiathl independence of the poaition of varioaa particles in 
apace. It is givas’by 



cDpp (k) _ f$ P (P.P, PI sin kft --F 608 kb , 
b = b(N) = a ($)” (2.5) 

where pr ia the concsutrstion of the aystem when it ia demmely packed, while b denotes 
the radius of a volnms containing, on the average, N particles. The averaging proceaa 
during the determination of fluctoationm io performed over this volume. The choice of N, 
i.e. trunhation of the altort-wave part of the fluctuation spectrum is dictated, in the prement 
theory, by the q iniatum aire of the fluctuationa at which the linearization in Section 1 can 
be performed. The momt detailed *fine grain’ deecripdon of the ntructnre of oar disparae 
corresponds to the choice of the specific volume of a single particle as an elementary 
volame (see the discossion in [2] ). 

fntrodoction in (2.51 of the last multiplier dependent on k, corremponaa to the process 
of smoothing of the short wave irregularitiee of the spectrum, which was proposed by 
Ma4gnon in [S]. Alternatively, we can use a well hnown procedure of Debye, in which the 
spectral density is 

330 P (P, - PI 
%,(‘4= 8ns 

3s ‘/a 1 
p 

l 

Y(k,-k), km= T b ( > (2.8) 

where Y (x) ir a Heaviside’s function. Such an expression was used in [l]. 
We note that in the presence of a fluid phase in tbs system, the positions of the 

neighboring particlaa cannot, in general, be assumed rtatietically independent. This 
however becomes unessential when the fluctuations are taken over sufficiently large.valnes 
fN >> 1). 

The dynamics of the degeneracy of the porosity fluctuations and, consequently, tbe 
spectral density qpp (0, kI depend, in the end, on the amount of deviation of the system from 
e~ifib~~, md this is the basic cause of the difficulties encountered in the determination 

of ‘? Pp fw, k).To overcome these difficulties, we separated in [2] all fluctuations into their 
micro- and macro-componentn, assuming at the same time that the variations in porosity 
fluctuationa with time represent a diffusion process governed only by the small amplitude 
motiona. In fact, the ratea of degeneracy are governed by the local fluctuations of all mean 
parametera, and ought to be deecribed by the same Eqe. (1.5) and (1.6) as the solution of a 
certain problem with given initial data. 

lnaerting (2.2) and (2.3) into the second Eq. of (1.7). we obtain (2.7) 

M (iu) dZ, = 0, M (ia) = (i@ + VW) Iio (4 (1 - p) + d& + 

+ Ml + (ipk + VP~ tk B (W + [io (6 11 - PI + d&l + WI H-W (io) 

Eq. AI (A) = 0 represents a characteristic equation of the linear system (1.5) and (1.61, 
and its roots define the mode of decay of the flactaatione in the problem with given initial 
data. 

In fact, the degeneration of flnctuatione caused by the regular factors allowed for in 
the equations, in compenmated by random accumulation of fluctuations, which, naturally, 
are not accounted for by thin equations. An analogous phenomenon is well known in the 
kinetic theory: the Boltmuanu equation for example, or the transfer equation enaning from it, 
describe an approufmation to the equilibrium state with maximum entropy, neglecting the - 
ao called - background noise resulting from the local deviations from the molecular randomness 
[9]. In our system, such a background noise may appear e.g. ae a result of small aplitnde 
perturbations within the specific volumes, and these perturbations cannot, in principle, be 
described by meanu of the regularired Eqs. OS) and (1.6). Therefore, when the eccnmoia- 
tion of fluctuetions is takes into account, thes the following stochestic equation corres- 
ponde to (2.7) 

iI&, -$- dY, =A(&, k), 
( > 

dY@(t, k) = ~e’pGfZp(o, k) G-1 



Bere ff, (A) ia a polynomial obtaiasd by moltiplyiag dl<& by the commoa deaomiaator 
of the qarmtitiea coataiaed w&bin the carlp bracketa in (2.11, A [t, U is R raadoax fanction 
of t depending alno on k as aparameter and of conataat spectral deasity, while the into 
gration in (2.8) ia performed over the whole frequency rangs. 

Thus (2.8) finally yislda the following Formula 

Writing xn a~pm~mation correspoading to &A), wo obtain tlta following expression 
for Ma ffo) 

By virtaa of (2.4, relationa (2.9) md (2.10) alao dsfiae the rpectral deasitfas of other 
raadom proceases considered here. 

3. Structars of the ateads zero-grad&ent fiowa and crftfeat 
flnotnafiaas. Correlation fanctiona caa be computed using known spectral densities, 
from the following Formula [I]: 

(3*Q 

where u and y darots arbitrary random procssasa. 
Let no firat consider the fluctuations taking plaoe within large voInmes (N s I) so 

that k 4 b-1 oan be considered as a small parameter daring the integration over the 
freqaenciem. In this case, we here 

aad the polynomial I& fflu)[’ from (2.10) caa be approximately represented by 

Let as consider the steady, aero-gradient flows, and orientate the coordinate axes ao, 
tbat g - (- 6” 0,O). 

Then Eon. (1.2) yield the following relations for these flowr 

VXP = - [d, (1 - P) + API g* Mu = - (1 - P) (4 - 4) g (3.3) 

From (2,101 we obtain, after some manipulationa, the following expression for 
fM* fff&f’ 
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Using the approximate equation 0’ + Cl2 ,N c12, we obtain, on integrating (2.91, 

y,, (w, k) = 
c12cswqyp (4 

n (0’ + ~1’) [(co + czW + cs2k14] (3.4) 

Integrating the spectral density tensor v’of the process obtained from (2.4) and using 
either (2.5) or (2.6) together with (3.4), we obtain the approximate expression for the cor- 
relation tensor (vl’vt’) 

eij(‘) = rui, j (t, r; 0, 0) = (Ui'Vj') = 

1 P 
(-) 

2P*-P 
=N l-p p+ -[@~(PB X)aij +(I + 2@1(P9 %)) Willu2 

(3.5) 

%(P, x) =~~P(l-P)2(&+~)2+~_,+.(p~(~_p)-l~) x . ’ 
x I- [ ( 2+&)P(l--P)(&)+y)]I9 4 XC- 

da 

Similarly, for (wi’wl’) we obtain 

6ij(‘l = T&, j (i!, r; 0, 0) = (Wi’Wj’) = 

1 
=N & ( ) 

2 y 102 (P, x) & + (@o (P) + 2% (P, x)) ~,I~,11 u2 

CD0 (p) = (1 - p)" (A + Y)” , 02 (P, x) = {(I - P)” + (3*6) 

+x[p(l-p)+E]+xc (I--++lZ} 
Ol((P, x) 

1 - p + x4 (I- P) (2 - P) + x [P (1 - P) + %I 

Last two expressions show, that the intensity of the longitudinal fluctuations of 
both phases is much higher than that of the transverse fluctuations. At large N, the computed 
quadratic fluctuations are proportional to N - 1 . This implies that the positions of the single 
particles can indeed be assumed to be statistically independent and Formulas (2.5) and 
(2.6) used. Moreover, this dependence of the quadratic fluctuations on N, justifies the use 
of (1.3) in the determination of the mean values of the parameters. For example, at large 
N, we have 

Qi = (1 - p) v - (p’v’> = (1 - p) v, Qz= pr+ <p'r') zpw 

for the phase flux. 
Let us now decrease N, i.e. turn our attention to small scale local properties of the 

disperse system. Consider two limiting cases: lo - when the inequalities (3.2) hold when 
k increases up to the value km = max (h-1 - a-1p”3, which corresponds to the most 
detailed description of the fluctuations and 2’- when the ineanalities (3.2) cease to hold 
at some k - k. and in which the inequalityis reversed, i.e. b2 > bl, al, a2 when k = k,. 

From (2.10) we easily see, that the first case is typical for the relatively fine, lightweight 
suspensions in liquids of high density and viscosity, while the other is typical for sus- 
pensions of large, heavy particles in a gas. In the first case additional terms appear in the 
expressions for the tensors 0(I) (I = 1, 2) . Th ese terms are proportional to the higher 
negative powers of N and this indicates the presence of negative correlation constraints in 
the system. In the second case, we have the following approximate relations for k > k. 

replacing (3.4) 

(3.7) 
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Thus for $1,. say, we have, using for simplicity the expression for @ (k) given 
by (2.61, 

eJ’l= (&)zp~[~U26il~~,+ (&)“Yo(p, X)~~(~i~+*~j~)! (3.8) 

Expressions for other correlation functions exhibit, in this case, similarly to (3.81, 

the terms proportional to ND2/‘, and this indicates the presence of positive correlation 

constraints in the system. Thus in both cases, single particles and the fluid elements are 

found, within their specific volnmes, to be statistically dependent, and Formulas (2.51 and 

(2.6) invalid, In this connection, the system under consideration resembles classical 

systems with long range interaction (ionised gas with Coulombic interaction, ordinaCry gas 

in the critical region, etc.). We find, that the characteristics of random phase motions re- 

ferred to relatively small elementary volumes (e.g. to the specific volume) can be computed, 

within the framework of the theory based on the relations (2.5) and (2.61, only approximatively, 

by extrapolating expressions of the type (3.5) and (3.6) to small N. 

Here we must question the validity of the method of statistical analysis of disperse 

systems based on the investigation of the kinetic equation for one-particle (unitary) dis- 

tribution function, when a statistical connection exists between the neighboring particles. 

Indeed we find, that the random forces existing between the particles and the fluid phase 

which enter this equation, are represented by the functionals, which are not only the 

functionals of the unitary, but also of the binary and higher, multi-particle distribution 

functiona.‘Somewhat surprisingly, this is the case for gas suspensions of the coarse 

particles, which were stndied earlier by means of this method [4]. 

Clearly, the systems with negative correlation constraits have small amplitude fluctu- 

ations (‘homogeneous’ systems). Conversely, systems with positive correlation constraints 

(‘inhomogeneoos’ systems) exhibit large amplitude fluctuations which may, in principle, 

result in the appearance of group movement of the particles, formation of large scale 

aggregates and formation of bubbles filled with dispersing medium and containing, practic- 

ally, no particles. It is possible, that it is precisely those critical fluctuations that are 

responsible for the observed transition from the homogeneous to the nonhomogeneous mode of 

pseudo fluidization [lo] in the manner similar to that occurring in gases, where the critical 

fluctuations cause the appearance of macroscopic volumes of the condensed phase and 

other associated phenomena such as that of the critical opalescence etc. [ll and 121. 

Comparing b, with 2bl and using the relations (2.10) and (3.3) we obtain, for k, - p’/. a-1, 

the following condition of the appearance of the nonhomogeneous mode: 

where A is the Archimedes criterion. The decisive part played by the value of A in 

establishing the homogeneity or inhomogeneity of the pseudo-fluidized state, was deduced 

earlier from empirical considerations, by several authors. In [13] for example, the ap- 

pearance of bubbles in the disperse layer is related to a parameter, which has the same 
meaning as A. In general we find, that the condition (3.9) shows a good agreement with 

many experiments on the violation of the homogeneous state and transition to the in- 

homogeneous state (see the survey in [lo]. If (3.91 holds, then the same concepts make it 
possible to estimate the linear ‘equilibrium’ dimension 1 of the inhomogeneities in the 

system. We have 

I? - AC (P, x) a 



baAgation of the critioal flaatnationa in an &h~mogeneooa atate aan, apparmtly, be 
conduetad with the halp of a cettafn fmotion, diffariag from ihe &faucttion, whiah definea 
the aorrelation ooaffieimta between tba poro~itiss in nonoverlapping volumea. This will 
alter the form of Exprerioau (2.5) and (2.6) for aw(k). Such UI appmaah was ancceae- 
fully employed by OrnAteia aad Taarnfka when analysing the fluetuatfon# of 8aa.m in the 
aritiaal ragion [ill. 

It ahoold bm l treaoed, that Formulaa (5.5) to (5.10) refer to the l taady, aero-gradient 
flowa. Corrampondly ralationm for the waral we eaa be obtatnad in a aimilar manner, 
Jthongh paraly aompatational problama may preseatt meriooa difficultiaa. It seems that 
compotatioaa performed separately for variona tmem of dioperna flowa, constitute a more 
rawardfag approach. 

1. DYIW~C ~~~u~~oIHJ. Final formulation of the mschaaical model dmneada 
explioit axpraaoions for the impulse flax dsa&y tamor in G?f and for the traasport 
coaffiaiaata ia both phases. Rfgoroaa expraa&no for thaae ooeffiaient~ au1 only be 
obtained from tha l eqaeaaa of apadona br partial diatribodon ionotiona, and thia l e- 
qaaca hu not yet been derived. We ahall use the phmomenologicel approach. In parti- 
aalu, we &all l mame that when the gradianta are mall, then the tenwm’ n(l)’ from 
(1.2) aan ba writta in the form oorraapondlng to a homo.geneoum, aniaotropic floid. We then 
have 

n(l)’ = P(l) - (q”’ + @) [@’ - a/* (Vv) E] - E(l) (Vv) 

new = pm - q”’ jZl’@’ - “Ia (Vu) E] - ji$) (VW) (4.1) 

Hem no, $0, and {(‘f (t = 1,2) denote, mspectively, the pressure (fIux 
danaity of the m~araible Impala traaaport) teaaor aad the shear aad volume riacoaity 
tomore of tha fluid aad dispamad phaaa de-dent on their pnlaatiag motions, while 
rnjt@) isthasffaetivetim co eit y of the fluid flltaring through aa ordered lattice of 
wtatiowry putido~. Viaeoaity /A is pmportional to k, increuee with inoreaaing p and for 
amall p it l atimfiem the following approximate expreaaion 
a.&[141 1. 

p z PO (1 + 6/s p) tree 

The following l ppmsimate axpraadans for the fluid phase ua obtained by analogy 
with &a t&okce ia a homogaaeoaa fluid 171 

pcl) e (1 - p) a,Ec’, q(l) z (I- p) r&D”, g(l) =?: 0 (4.2) 

e(l) = RB(t, r; 0, 0) = lim 6:’ = Iim r, (t, r; 0, 0) 
N-a N&l 

‘i’hs tanaore @, and% appearing hare, refer to the fluid within the ape&c 
rolame of a l iade partiole ~ril are okdaed from the magaitudw defined. for a volume 
l lamrt aontainimg N pax&lea (N B 1) (aae Seation S). Moleonlar dfffkaioa and molar 
mixing of fluid due to itn motion along mrred petbe between the puticlsr in the lattice, 
are not taken Qte moonut in (4.2). 

We caa dimtiqpish between two limit modea of flow 111. Thay will dapead on the 
mlatiaahip batw- the maaa time 2’ of travomo of the maaa free path A by a partiole, 
and tha tkaa Te of rolexdon of thia partiale to tha aeaditioas axiatka ia’the suapotig 
flow. fa the f&at,’ pHaado+#~~lea~t’ mode,, we hV6 T - h. < @‘@I,* >-*& p T, = 

II nm @K)-', m = q,d,, 6 -A p / ir,, aad the collisioa~ between the particles 
hava no l ppeoi&le iaflaence on the Iocai mas8 and impalae traaoport prooeaaee. In the 
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aeaond, ‘pseudoq~aeoua’ atate, T ,#Z T, and tba collfafona are mainly reaponaiblr for tha 
transport proce~eir in the diaperae phase. When p ;a: 1, A II & where b denotes the 
claaeical free path: whalp+Jlr ,th e magnitude A mry repseas* the difference in the 
radii of specific volumes in the state nnder conaidaration and fn the state of close prokfng. 
We have 

It foIlawE from Section 9 that the magnitude, ( ]I& > ia proportional to pe . p, aud 

ye tenda to the value different from zero aa p + p,, Therefore the ‘pseudo-gaaeoae’ state 
may l ccomodata an arbitrary diaperaa system, provided that the latter is of sufficient 
concentration. As p -, 0, 2’ + w rmd the ‘~~do~urbnl~t’ etate may materialize fn any, 
sufficiently diluted ayatem, 

An obvious analogy between the transport in the ayatem of suspended partfetes and 
the trenaport due to the turbulent fluctuationa in a homogeneone mtdfum, can also be noted 
in the ‘paeudoltarbulent’ atate. 

The following approximate expreasiona em analogous to thoae gfvsn for the fluid 
phaee (71 

D(2) 
r; r, 0) + R,* (t, r; z, O))& (4.3) 

0 

In the ‘pseudo-gaseous* flow we have P cleuly dsffnsd aualogy between the #us 
particles and a gas corn 

Y” 
aed of rf#d l pherae. Thia analogy was utilfaed in [l and 4 fen 

dad 
. In 

thie case the tensor PC* aud the transport coefficients can be approxhuately s&mated from 
the known result8 of the tfnetfc theory of derue gases by maltiplyfng the quantities given 
the elementary theory; Ibyaomo functionaofp. Uaiug, aa in [I], the reaulta of the Enakog’s 

by 

theory of dense g-08, we obtain the following apPoxfmate relationa 

P%pd,(i + Y (p)) eta), q@hipq” [Y-l(p) + 0.8+ 0.76Y(p)] 

gt2) ==P 4pfY (p), D”’ z 4pDQF (p), Y(p) = 4py (p) (4.4) 

Function X @) showa how the frequency of the binary colliaioua (we note that in the 
ayatem compoaad of spherem wfth &type interaction, ail oollfdone are bfnaryl ehangea 
with coneeutmtion. Aa we know, faureaaa in the aollidon frequency with increasing p ia 
caused by dfmhiahfng of the fme volume within which the centers of l pherea are free to 
move, while the soreenfng motion of the neighborfag particlea on each particle lorda to the 
decrease in frequency. Wheu p ,a 1, then the sxpreadon obtafned by Enakog for X @) aud 
otiliaed in the theory of dfaperae mptemm, holds [4] 

x (P) = (1 -2% P) (4 - SPY’, p 6 1 

In hia earlier work [l], the author used the expremrion for X @I obtafned from the 
approximate ‘geometrfoal’ theory of dense gamea, whioh gave l atfafaotory results for 

p > 0.10 to 0.15. 
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The appearance of the function X (p) in the expression for P(l) in (4.4) is connected 

with the fact that an impulse is transmitted instantaneously within the material of the 

particle. 

Thus, in general, the rheological characteristics of disperse systems depend strongly 

on the type of flow and are usually represented by very complicated functions of mean 

parameters of the flow and of their derivatives with respect to the spatial and time co- 

ordinates. When p + 0, all magnitudes in (4.2) and (4.3) decrease as pawhere u > 8. When 

p + p+, then the components of Pc2) tend to the values differing from both, zero and infinity 

since B(‘) - pa - p, while X (P) - (Fe - PI-‘, 
(p+ _ p)3/2, while g(z) 

the components of Dt2) tend to zero as 
and (c2) tend to infinity as (p+ _ p)-“. Various components of 

last two tensors considered as functions of p can, and usually have a maximum and a 

minimum when p Q pf ‘Such a dependence of the viscosity on p has been obtained experi- 
men:ally for dense, disperse systems (see e.g. [15]). 

The problem of formulating a unique equation of conservation of impulse for the total 

amount of dispersed phase, is interesting. We can infer from (1.2), that this is indeed 

possible in two cases: (1) - for the particles suspended in a gas, when we can neglect 

the inertia and the gas fluctuations and express F and v from the first Eq; of (‘1.2) in terms 

of p, vp and W, subsequently inserting them into (1.1) and the second Eq. of (1.21, and 

(2) - for the suspensions of almost uniform density when we can assume that u = 0 and 

sum Eqs. (1.2). In both cases we have three equations; one of the conservation of impulse 

of the dispersed phase and two of the conservation of mass of both phases, for three 

unknowns W, p and p. We note, that the boundary conditions assume in these cases a 

slightly different form; in particular, the pressure gradient of the fluid phase appears in 

these conditions. 

From this we see, that the disperse systems are, essentially, non-Newtonian. Their 

rheological properties are represented by very complicated functions of mean parameters of 

the flow, and this leads to the appearance of additional nonlinearities in the dynamic Eqs. 

(1.21. In addition, rheological characteristics of the same system may differ appreciably 

from one case to the other, depending on the type of motion effected by the system. 
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